Highlights
Vani K: Idea plagiarism detection using syntax-semantic concept extractions
23 April 2018 - 23 April 2018
IDSIA Meeting Room Galleria 1 @9:30
Plagiarism is increasingly becoming a major issue in the academic and educational domains. Automated and effective plagiarism detection systems are direly required to curtail this information breach, especially in tackling idea plagiarism. The proposed approach is aimed to detect such plagiarism cases, where the idea of a third party is adopted and presented intelligently so that at the surface level, plagiarism cannot be unmasked. The work aims to explore syntax-semantic concept extractions with genetic algorithm in detecting cases of idea plagiarism. The work mainly focuses on idea plagiarism where the source ideas are plagiarized and represented in a summarized form. Plagiarism detection is employed at both the document and passage levels by exploiting the document concepts at various structural levels. Initially, the idea embedded within the given source document is captured using sentence level concept extraction with genetic algorithm. Document level detection is facilitated with word-level concepts where syntactic information is extracted and the non-plagiarized documents are pruned. A combined similarity metric that utilizes the semantic level concept extraction is then employed for passage level detection. The proposed approach is tested on PAN 2014 plagiarism corpus for summary obfuscation data, which represents a challenging case of idea plagiarism. The results obtained are found to exhibit significant improvement over the compared systems and hence reflects the potency of the proposed syntax-semantic based concept extractions in detecting idea plagiarism.

The speaker

 Vani K is a PhD student at Amrita University in India

st.wwwsupsi@supsi.ch